Компенсаторы

Компенсатор сильфонный разгруженный
Компенсаторы для систем отопления
Компенсаторы сильфонные осевые

Смотреть каталог...

 

Металлорукав

Металлорукава, с широкой гофровкой: МН 211
Металлорукава, высокого давления: МН 221
Металлорукава, с узкой гофровкой: МН 231

Смотреть каталог...

Новости компании

Статьи

Статистика

Rambler's Top100 Яндекс.Метрика

О назначенной наработке сильфонных компенсаторов

Е.В. Кузин, директор, ООО «АТЕКС-инжиниринг», г. Иркутск;
В.В. Логунов, заместитель генерального директора,
В.Л. Поляков, главный конструктор проектов по теплосетям,
ОАО «НПП «Компенсатор», г. Санкт-Петербург

 

В современных трубопроводах для компенсации температурных деформаций все чаще применяются сильфонные компенсаторы. Основное назначение сильфонного компенсатора – компенсировать деформации трубопровода, не разрушая его и сохраняя герметичность.

Способность компенсатора воспринимать деформации определяется его назначенной наработкой, описывающей какое количество циклов и с какой амплитудой сильфонный компенсатор воспринимает без появления повреждений. В общем случае зависимость количества циклов от амплитуды деформаций для сильфона представлена в табл. 1. Данные, приведенные в таблице, достаточно приблизительны и не учитывают множество факторов, но могут дать представление о характере зависимости количества циклов назначенной наработки от амплитуды деформаций. Зависимость количества циклов от амплитуды сугубо индивидуальна для каждого сильфона и зависит от диаметра компенсатора, количества слоев, толщины слоев, материала слоев, геометрических размеров гофра и т.д. Например, для компенсаторов большего диаметра график зависимости количества циклов от амплитуды будет иметь более пологий характер (запомним этот факт).

Таблица 1. Зависимость количества циклов от амплитуды деформаций для сильфона.

Амплитуда, % 120 110 100 90 80 70 60 50 40 30 20 10
Количество циклов 350 650 1000 1500 2500 4000 8000 16000 35000 105 3´105 8´105

Как видно из табл. 1, даже деформации с амплитудой в 10% от номинальной при большом количестве циклов способны вывести компенсатор из строя. Поэтому при определении количества и амплитуды циклов нужно как можно более полно описать температурную историю трубопровода. Это достаточно легко сделать для трубопроводов с простой температурной историей, например, для паропроводов достаточно посчитать количество циклов включения/выключения за весь срок эксплуатации и добавить некоторый запас на аварийные ситуации. Иначе обстоит дело с трубопроводами со сложной температурной историей, наиболее яркий их представитель – это тепловые сети с качественным регулированием режима тепловой нагрузки. Температура теплоносителя зависит от температуры наружного воздуха, что привносит некоторую неопределенность.

Для исключения этой неопределенности поступают следующим образом: анализируют график изменения температуры теплоносителя за несколько лет с наиболее холодными температурами наружного воздуха, на основе полученных данных разрабатывают упрощенную температурную историю, эквивалентную по разрушающему воздействию реальной температурной истории. Под упрощением в данном случае понимается сокращение количества элементов сложносоставной температурной истории. Элемент сложносоставной назначенной наработки – это совокупность величины деформации и соответствующее ей количество циклов. Сложносоставная назначенная наработка состоит из нескольких таких элементов.

Например, согласно РД-10-400 в ПО СТАРТ установлена температурная история, состоящая из четырех элементов (табл. 2).

Таблица 2. Температурная история согласно РД-10-400 в ПО «СТАРТ».

Деформация, % Период Количество циклов в период, шт. Количество циклов за 30 лет, шт.
100 год 1 30
50 месяц 2 720
25 неделя 4 6258
12,5 день 8 87600

Повторимся, что это не реальная температурная история, а эквивалентная ей по разрушающему воздействию. Понятно, что тепловая сеть при нормальных условиях эксплуатации не совершает циклов со 100% величиной деформации, т.е. циклов от температуры монтажа (t0 часто принимается равной 0 °C) до максимальной температуры теплоносителя, хотя бы потому, что максимальная температура теплоносителя возможна только при температуре наружного воздуха равной расчетной температуре проектирования систем отопления, а запуск тепловой сети происходит, как правило, при положительных температурах наружного воздуха.

В реальной температурной истории количество циклов, амплитуды и количество таких элементов может быть совершенно другим, главное то, что разрушающее воздействие на элементы трубопровода будет эквивалентным.

Приведенная температурная история (см. табл. 2) означает, что трубопровод за 30 лет совершит 30 циклов с деформацией 100% и 720 циклов с деформацией 50% и 6258 циклов с деформацией 25% и 87600 циклов с деформацией 12,5% (т.е. указывается суммарная назначенная наработка).

Разработкой назначенной наработки для сильфонных компенсаторов занималась еще в 1980-е гг. группа инженеров возглавляемых Я.А. Ковылянским и Г.Х. Умеркиным («ВНИПИэнергопром»). При разработке назначенной наработки были учтены следующие условия.

  1. Так как температурная история трубопровода не зависит от диаметра трубопровода, а график изменения количества циклов от амплитуды для сильфонного компенсатора наоборот (зависит от диаметра компенсатора и прочих его конструктивных особенностей), поэтому назначенная наработка сильфонных компенсаторов для тепловых сетей обязательно должна иметь не менее 3 элементов.
  2. При охлаждении трубопровода до минимальной температуры растяжение компенсатора не должно превышать рабочей амплитуды сильфонного компенсатора. Другими словами, при чрезвычайной или аварийной ситуации сильфонный компенсатор должен иметь возможность растянуться, не потеряв герметичность и не повредив собственную конструкцию и элементы трубопровода. По этой причине сильфонные компенсаторы подбираются по диапазону температур от расчетной температуры проектирования систем отопления (как правило) до максимальной температуры теплоносителя, а в назначенной наработке сильфонного компенсатора для тепловой сети обязательно должен быть указан элемент со 100% деформацией.
  3. Назначенная наработка для сильфонного компенсатора должна иметь как можно меньшее количество элементов, для того чтобы сократить время испытаний на подтверждение вероятности безотказной работы по назначенной наработке (при огромном количестве циклов испытание одной пары компенсаторов может занимать несколько недель).

Назначенная наработка для сильфонных компенсаторов тепловых сетей на 30 лет с учетом рассмотренных выше условий приведена в стандарте организации Некоммерческое партнерство «Российское теплоснабжение» СТО НП «РТ» 70264433-4-6-2010 «Компенсаторы сильфонные и сильфонные компенсационные устройства для тепловых сетей. Общие технические требования» (табл. 3).

 

Таблица 3. Назначенная наработка для сильфонных компенсаторов тепловых сетей на 30 лет (СТО НП «РТ» 70264433-4-6-2010).

Амплитуда, % Количество циклов, шт.
100 не менее 10
70 не менее 150
20 не менее 10 000

 

В таблице указана суммарная назначенная наработка, т.е. компенсатор должен совершить все указанные циклы с соответствующими амплитудами без повреждения компенсатора.

Так как назначенная наработка указана в разных температурных диапазонах (для тепловой сети диапазон от температуры монтажа до максимальной температуры теплоносителя, а для сильфонного компенсатора – от расчетной температуры проектирования систем отопления до максимальной температуры теплоносителя), проектанты часто путаются, сравнивая деформацию и амплитуды, выраженные в относительных единицах.

 

Рассмотрим указанную назначенную наработку на конкретном примере: проектируется участок тепловой сети с максимальной температурой теплоносителя 130 °C; температура проектирования систем отопления принимается равной –30 °C; температура монтажа принята как 0 °C. 100% деформация для данной тепловой сети при расчете в ПО СТАРТ или ручном расчете будет совершаться при изменении температуры от 0 до 130 °C, т.е. перепад составит 130 °C. Так как компенсатор подбирается для диапазона температур от –30 до +130 °C, то для компенсатора при таком перепаде температур деформация составит 130/(130+30)=0,8125 или 81,25% от номинальной (см. рисунок). Аналогично и для других элементов назначенной наработки.

Приведенный пример наглядно показывает, что сравнение температурной истории трубопровода и назначенной наработки тепловой сети, выраженные в относительных единицах проводить недопустимо.

Заключение

Таким образом, назначенная наработка СК по эквивалентному разрушающему воздействию должна соответствовать реальной температурной истории трубопровода за срок его эксплуатации. Назначенная наработка СК для тепловых сетей за 30 лет эксплуатации должна соответствовать указанной в СТО НП «РТ» 70264433-4-6-2010. Расчет расстояния между неподвижными опорами для сильфонного компенсатора тепловой сети должен проводиться по 100% компенсирующей способности, указанной в назначенной наработке, в диапазоне температур от расчетной температуры проектирования систем отопления до максимальной температуры теплоносителя. Назначенная наработка по СТО НП «РТ» 70264433-4-6-2010 не означает, что компенсатор обязательно срабатывает с ходом 100% своей компенсирующей способности, а допускает такую работу при возникновении аварийной ситуации.

 

Кузин Е.В., Логунов В.В., Поляков В.Л., О назначенной наработке сильфонных компенсаторов

Источник: Журнал «Новости теплоснабжения» №3, 2011 г. , www.ntsn.ru/

 

О нас Каталог Прайсы Новости Контакты